Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 56: e12849, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447684

ABSTRACT

Plant cell cultures have become a promising production platform of bioactive compounds for biomedical and cosmetic uses in the last decades. However, the success so far has been limited. The study aimed to evaluate the effectiveness of this unique biotechnology process to obtain a bioactive stem cell extract of Coffea canephora (SCECC) with antioxidant, anti-inflammatory, and regenerative properties. Total phenolic and flavonoid contents were determined in the SCECC by spectrophotometry. The chemical composition of the extracts was characterized by mass spectrometry. Antioxidant activity was evaluated using the colorimetric methods of free radical scavenging 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and the ferric reducing ability of plasma (FRAP). The anti-inflammatory activity was determined in lipopolysaccharide-stimulated RAW 264.7 macrophages through the production of superoxide anion (O2•-), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and the activity of nuclear factor kappa B (NF-κB). Moreover, the ability of SCECC to stimulate the proliferation and migration of fibroblasts was assessed. Five compounds were tentatively identified, two flavonoids, two phenolic acids, and one sugar. High phenolic content and antioxidant activity were observed in the SCECC. SCECC promoted the proliferation and migration of fibroblasts and suppressed the pro-inflammatory mediators O2•-, NO, TNF-α, and IL-6 in a dose-dependent manner. Moreover, SCECC inhibited the NF-κB transcription factor. Therefore, we obtained evidence that the extract from C. canephora stem cells can be used as a natural agent against skin damage. Hence, it could be of interest in cosmetics for preventing skin aging.

2.
Braz. j. med. biol. res ; 52(2): e8209, 2019. tab, graf
Article in English | LILACS | ID: biblio-984033

ABSTRACT

Vegetable oils have been used for a plethora of health benefits by their incorporation in foods, cosmetics, and pharmaceutical products, especially those intended for skin care. This study aimed to investigate the cutaneous benefits of a vegetable oil blend (VOB) formulation and its fatty acid composition. The anti-inflammatory activity was studied in macrophages of RAW 264.7 cells by investigating the release of nitric oxide (NO), superoxide anion generation (O2-), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). ABTS cation radical scavenging capacity assay, ferric reducing antioxidant potential (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and NO free radical scavenging assays were used to evaluate the antioxidant activity. VOB was tested for its ability to stimulate fibroblast proliferation and migration using the scratch assay, and antibacterial activity by the microdilution test. The fatty acid profile of a freshly prepared VOB formulation was determined by gas chromatography before and after accelerated stability testing. Chemical composition of VOB revealed the presence of oleic acid (C18:1n-9; 63.3%), linoleic acid (C18:2n-6; 4.7%), and linolenic acid (C18:3n-6; 5.1%) as major mono- and polyunsaturated fatty acids. No changes in the organoleptic characteristics and fatty acid composition were observed after the accelerated stability test. VOB 100 µg/mL reduced the healing time by increasing the total number of cells in the wounded area by 43.0±5.1% compared to the negative control group. VOB also suppressed the pro-inflammatory TNF-α and IL-6 cytokines, and NO and O2- production in lipopolysaccharide-stimulated macrophage cells. In conclusion, the VOB formulation contributed to the improvement of current therapeutic strategies for cutaneous applications in skin care.


Subject(s)
Animals , Rabbits , Wound Healing/drug effects , Plant Oils/pharmacology , Fatty Acids/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Plant Oils/chemistry , Cell Movement/drug effects , Cells, Cultured , Skin Care , Cell Proliferation/drug effects , Fibroblasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL